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PART I – Literature Study 

Inorganic binders are materials or mixtures of materials in powder form that, through 

interaction with water or aqueous solutions, undergo hydration-hydrolysis processes, forming 

systems that harden into solid, durable materials [1–4]. 

Binders can be classified based on several criteria according to: the nature of the binder 

(single or mixed binders), the method of production (non-clinkered and clinkered binders), and 

the hardening conditions (aerial and hydraulic binders). 

Hydraulic binders are those that require a moist environment to harden and, after 

hardening, resist well in the presence of water [1–4]. Among these, the most important are 

those based on Portland or aluminous cement, either single or mixed. 

Inorganic bio-binders are phosphate-based, and depending on their compositional 

characteristics, they are used in dentistry and hard tissue engineering. 

Dental cements are essential materials in dentistry, used for fixing prefabricated 

restorations (crowns, bridges), temporary fillings, temporary or permanent cementing, and 

other applications. Among the various types of dental cements, inorganic phosphate bio-

cements, which include zinc-phosphate, silico-phosphate, and calcium-phosphate cements, are 

well-known for their specific properties and diverse uses [5–11]. 

These systems solidify and harden through acid-base reactions, which are exothermic 

processes that form very stable salts in their working environment. They consist of a solid 

component, generally basic, and a liquid component, usually acidic. With the exception of 

calcium-phosphate systems, the setting time for these systems ranges from 4 to 10 minutes, 

and the mechanical compressive strength after 24 hours of application represents over 95% of 

the maximum value reached. 

Zinc-phosphate cements are classic materials widely used in dentistry for cementing 

crowns and bridges [6–8,13]. From a chemical engineering perspective, these represent a 

fascinating example of composite material obtained through an acid-base reaction, with 

properties well-controlled by compositional characteristics and operational conditions. 

Compositionally, zinc-phosphate cements primarily consist of two components: the 

solid phase—sintered zinc oxide powder (ZnO, with sintering additives such as MgO, SnO2, 

CaF2)—and the liquid phase—an aqueous solution of partially neutralized orthophosphoric 



acid (H3PO4, neutralizing agent: Al2O3/Al(OH)3, ZnO). The aqueous solution of H3PO4 is 

typically in a concentration of 40-60%. Additionally, zinc oxide is known for its excellent 

biological properties. 

Silico-phosphate cements represent a class of materials used in the medical field due to 

their unique properties, such as biocompatibility, durability, and mechanical performance 

[5,6,16]. 

Silico-phosphate dental cements consist of two components: the solid phase—an 

alumino-fluoro silicate glass powder—and the liquid phase—an aqueous solution of partially 

neutralized orthophosphoric acid (H3PO4, neutralizing agent: Al2O3/Al(OH)3, ZnO). The 

aqueous solution of H3PO4 is typically at a concentration of 48-55%. 

These cements exhibit high translucency, which is why they were initially called "dental 

porcelain." However, due to their solubility in the oral cavity over time, they become matte due 

to microcracking. 

Silico-phosphate cements possess remarkable physicochemical and biological 

properties, such as: compressive strength (170-235 MPa), chemical stability (resistance to acid 

attack and chemical degradation, providing increased durability), adequate setting time (3(4)-

24 min, which can be adjusted according to clinical needs by factors such as system 

composition, powder/liquid ratio, working temperature), and biocompatibility (they do not 

cause adverse reactions when in contact with biological tissues). 

Calcium-phosphate cements (CPC) are biomimetic materials widely used in medical 

applications due to their biocompatibility, bioactivity, resorption ability, and capability to form 

new bone. Additionally, they can carry active pharmaceutical compounds, functioning as local 

drug delivery systems [6,18–27]. From a chemical engineering perspective, CPCs are of major 

interest due to their properties and ability to harden in moist environments, mimicking the 

natural behavior of bones. CPCs allow applications, particularly in minimally invasive surgery 

for bone defect reconstruction. 

Acid-base hardening CPCs result from mixing with water or a diluted orthophosphoric 

acid solution (0.2%) of a powder formed from two phosphates—one more basic than 

hydroxyapatite and the other more acidic but with greater solubility than hydroxyapatite. At 

pH values corresponding to the physiological environment, after solidification and hardening, 



hydroxyapatite (apatite cement, AC) or dicalcium phosphate dihydrate (brushite cement, BC) 

forms. 

Silico-calcium-phosphate cements are materials developed from calcium-phosphate 

cements and are used in hard tissue substitution and regeneration. These materials exhibit 

excellent bioactivity and osteogenicity. 

They are produced by mixing calcium phosphates doped with Si4+ (e.g., TCP, DCPD) 

or their mixtures with calcium silicates (e.g., wollastonite, calcium orthosilicate, tricalcium 

silicate), either undoped or doped (e.g., Sr3+, Mg2+, Fe3+), with water or an aqueous 

orthophosphoric acid solution to primarily improve their physicomechanical and biological 

properties [26,32–38]. 

Various powders can be added to inorganic binder systems to improve their hardening 

behavior, with positive consequences for their physicomechanical properties and durability. 

Recently, the development of nanotechnologies has enabled both in-depth 

characterization of these systems and the creation of micro- or nanocomposite binders with 

superior properties for special applications (e.g., in construction materials—self-cleaning 

binders, antibacterial materials, systems for monitoring crack propagation in mortar/concrete, 

and in biomedicine, particularly for enhancing biological behavior, such as antibacterial 

properties) [39–43]. 

Nanopowders are ultrafine particles ranging from 1 to 100 nanometers (nm) in at least 

one dimension. These particles, which fall under the category of nanomaterials, are 

distinguished by their extremely high specific surface area relative to their volume, giving them 

unique physical, chemical, and biological properties compared to bulk (macroscopic) materials 

of the same composition [44]. 

Thus, the main characteristics of nanopowders are [44]: 

- Large specific surface area—This property increases chemical reactivity and 

interaction with the reaction environment, making nanopowders ideal for applications 

such as catalysis, sensors, or drug delivery. 

- Unique optical, electrical, and magnetic properties—Due to quantum effects at the 

nanoscale, these materials can exhibit exceptional behaviors such as superconductivity, 

magnetism, or fluorescence. 



- Potential to cross biological barriers—Their small size allows nanoparticles to cross 

cellular membranes, making them effective in targeted therapies and medical imaging. 

PART II – Original Contributions 

Motivation and Objectives of the Study 

The aim of the undertaken study was to explore and highlight the advantages of using 

nanopowders within binder systems, with potential applications either in the field of 

construction materials with special uses or in the medical field, particularly in tissue 

engineering. Nanotechnologies have a significant impact on improving material properties, 

both in construction and biomedical applications. 

The main objectives of the thesis were: 

1. Development of special binder systems based on Portland cement with photocatalytic 

properties, containing ultrafine silica (UFS; a by-product from the ferroalloy industry, 

characterized by a large specific surface area and pozzolanic activity) on which TiO2 

nanopowder (with photocatalytic properties) was deposited. 

It was considered in the study that fixing the photocatalyst on the surface of a 

hydraulically active material would allow for better dispersion of the photocatalytic agent and 

improved stability. The sol-gel method was used for synthesis. 

Both the individual components and the final composite materials were subjected to 

complex characterization using modern investigative techniques such as: thermal analysis, X-

ray diffraction, electron microscopy (scanning and transmission), FT-IR and UV-Vis 

spectroscopy, specific surface measurements (Blaine and BET), and binder properties 

(standard consistency water, setting time, and mechanical strength). 

2. Development of new bio-binder composites for medical applications, specifically for 

dental use in endodontics, for root canal filling or perforation filling, and dentin mineralization, 

using nanobio-cellulose (BC) and barium titanate (BT). 

The main stages in obtaining these biomaterials were as follows: 

 



i. Decomposition of the 3D porous structure of bacterial cellulose (BC), consisting of 

fibers and fibrils, through autoclaving treatment at 100°C for 24 hours in a basic 

medium (8M KOH), followed by grinding for 1.5 hours (150 rpm) in a planetary ball 

mill in an ethanol medium. 

ii. Synthesis of barium titanate (BT) via the sol-gel hydrothermal method, where the gel 

was obtained from titanium butoxide and barium acetate, with a molar ratio of BaO = 

1:1. Gelation occurred within 24 hours at room temperature, and drying was performed 

at 80°C for 24 hours. Hydrothermal treatment was carried out at 120°C for 24 hours in 

4M KOH. 

iii. Synthesis of silicate cement by thermal treatment at 1400°C for 2 hours and 1450°C for 

4 hours of a precursor mixture obtained by the sol-gel method, followed by grinding 

for 30 minutes (150 rpm) in a dry medium in a planetary ball mill to obtain a fine white 

powder. 

iv. Homogenization by sifting the silicate cement with BC or BT powder in a 9:1 ratio. 

The addition of BC or BT to the cement aimed to improve its properties, from binder 

characteristics (setting time, mechanical strength) to biological performance. 

Both the individual components and the final composite materials were subjected to 

complex characterization using modern investigative techniques, such as thermal analysis, X-

ray diffraction, electron microscopy, specific surface measurements, and mechanical strength 

tests. Additionally, to demonstrate the applicability potential of the silicate cement-bio-

cellulose or silicate cement-barium titanate materials, as well as their biocompatibility and 

bioactivity properties, in vitro tests were performed by immersion in simulated biological fluid 

(SBF) and behavioral evaluations in the presence of cell cultures (cell proliferation test – MTT 

and fluorescence optical microscopy, oxidative stress test - GSH). 

3. Development of calcium silico-phosphate binder systems with the addition of 

nanobio-cellulose (BC) and/or barium titanate (BT), which can be successfully used in the 

substitution and regeneration of hard tissue, such as in endodontics for canal fracture filling. 

These binders were obtained using a two-component system, consisting of: 

- Solid component - calcium-silicate powders based on wollastonite with or without the 

addition of nanopowders (bio-cellulose and barium titanate), aimed at improving the 

binder's characteristic properties, particularly its biological behavior. 



- Liquid component - aqueous phosphate solutions. 

Both the individual components and the final composite materials were subjected to 

complex characterization using modern investigative techniques such as: complex thermal 

analysis, X-ray diffraction, electron microscopy (scanning and transmission), FT-IR and 

RAMAN spectroscopy, particle size distribution measurements, setting time, and mechanical 

strength tests. 

General Conclusions and Originality 

During the doctoral study, all proposed objectives were achieved, and all the materials 

obtained and examined for their properties demonstrated significant potential for application 

in fields such as construction materials or dentistry. 

The doctoral study was divided into two main parts: 

- Part I provided an overview of the importance of binder systems, the types of 

nanopowders used in construction materials with self-cleaning properties, or in tissue 

engineering, as well as the main synthesis methods for these materials. 

- Part II presented an extensive account of the original contributions and the results 

obtained and disseminated in the specialized literature. 

This structure allowed for a comprehensive exploration of both theoretical and practical 

aspects, showcasing the innovative potential of the research conducted. 

Chapter 4 - Special-Purpose Construction Binder Systems with ultrafine silica 

(SUF) - TiO2 Powders 

In Chapter 4, special binder systems based on Portland cement, incorporating ultrafine 

silica (SUF) and TiO2, were developed. The originality of this work lies in the fact that SUF 

was used as the surface on which TiO2 nanopowder was deposited. The chapter explored and 

developed the idea that fixing TiO2 on the surface of a hydraulically active material would 

enable better dispersion of the photocatalytic agent and improve its stability. 

To demonstrate the initial hypothesis, both the individual components and the final 

composite materials were subjected to complex characterization using modern investigation 

techniques, including: Complex thermal analysis, X-ray diffraction Scanning and transmission 



electron microscopy, FT-IR and UV-Vis spectroscopy, Surface area measurements (Blaine and 

BET), Binder properties: standard consistency water, setting time, and mechanical strength. 

The studied samples exhibited promising mechanical and photocatalytic properties 

through the addition of nanopowders, suggesting that these materials could be desirable 

solutions for self-cleaning construction materials. 

The results obtained and presented in this chapter were reported in the paper "Synthesis 

and characterization of titania-silica fume composites and their influence on the strength of 

self-cleaning mortar" published in Composites Part B: Engineering in 2018 [155]. 

Chapter 5 - Biobinders of the Silicate-Clinker Type with ammonium phosphate, 

with and without Nanopowder Additives 

Chapter 5 demonstrated the novel development of bio-binder composites with medical 

applications by using nano-powders such as bacterial cellulose (BC) and barium titanate (BT). 

The addition of nano-BC or nano-BT to the cement matrix aimed to enhance both the binder 

properties (setting time, mechanical strength) and the biological properties of the material. The 

potential applicability of silicate-bacterial cellulose or silicate-barium titanate cements, with a 

focus on biocompatibility and bioactivity, was highlighted through in-vitro tests, including 

immersion in simulated biological fluid (SBF) and behavioral evaluations in the presence of 

cell cultures (cell proliferation assay - MTT, optical fluorescence microscopy and oxidative 

stress - GSH). 

Specific in-vitro tests (mineralization by immersion in SBF, MTT, GHS, and 

fluorescence microscopy) showed that all the studied materials have high applicability 

potential, with no adverse effects, making them suitable for integration into the human body 

for hard tissue substitution. Additionally, samples with BC or BT nanopowder additives 

demonstrated enhanced bio-efficiency. 

Chapter 6 - Calcium Silico-Phosphate Biobinders with Improved Properties 

Through Nanopowder Addition 

Chapter 6 focused on the novel development and analysis of calcium silico-phosphate 

binder systems with added nano-biocellulose (BC) and/or nano barium titanate (BT), with 

applications in grafting or repairing hard tissue, particularly for canal fracture treatment in 

endodontics. In-vitro tests and molecular biology studies showed that cells proliferate during 



contact with the obtained materials, and the studied genetic sequences indicated that materials 

with BC and BT generally promote the formation of mature osteoblasts. 

The results obtained and presented in this chapter were reported in the paper "Modified 

calcium silicophosphate cements with improved properties" published in Materials Chemistry 

and Physics in 2019 [164]. 
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